Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vet Res Commun ; 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-20244291

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 is the causative agent of Coronavirus Disease 2019 in humans. Among domestic animals, cats are more susceptible to SARS-CoV-2 than dogs. The detection of anti-SARS-CoV-2 antibodies in seemingly healthy cats and/or infected cats which are in close contact with infected humans has been described. The presence of animals that tested positive by serology or molecular techniques could represent a potential transmission pathway of SARS-CoV-2 that can spill over into urban wildlife. This study analyses the seroprevalence variation of SARS-CoV-2 in stray cats from different waves of outbreaks in a geographical area where previous seroepidemiological information of SARS-CoV-2 was available and investigate if SARS-CoV-2-seropositive cats were exposed to other co-infections causing an immunosuppressive status and/or a chronic disease that could lead to a SARS-CoV-2 susceptibility. For this purpose, a total of 254 stray cats from Zaragoza (Spain) were included. This analysis was carried out by the enzyme-linked immunosorbent assay using the receptor binding domain of Spike antigen and confirmed by serum virus neutralization assay. The presence of co-infections including Toxoplasma gondii, Leishmania infantum, Dirofilaria immitis, feline calicivirus, feline herpesvirus type 1, feline leukemia virus and feline immunodeficiency virus, was evaluated using different serological methods. A seropositivity of 1.57% was observed for SARS-CoV-2 including the presence of neutralizing antibodies in three cats. None of the seropositive to SARS-CoV-2 cats were positive to feline coronavirus, however, four SARS-CoV-2-seropositive cats were also seropositive to other pathogens such as L. infantum, D. immitis and FIV (n = 1), L. infantum and D. immitis (n = 1) and L. infantum alone (n = 1).Considering other pathogens, a seroprevalence of 16.54% was detected for L. infantum, 30.31% for D. immitis, 13.78%, for T. gondii, 83.86% for feline calicivirus, 42.52% for feline herpesvirus type 1, 3.15% for FeLV and 7.87% for FIV.Our findings suggest that the epidemiological role of stray cats in SARS-CoV-2 transmission is scarce, and there is no increase in seropositivity during the different waves of COVID-19 outbreaks in this group of animals. Further epidemiological surveillances are necessary to determine the risk that other animals might possess even though stray cats do not seem to play a role in transmission.

2.
Nat Commun ; 14(1): 948, 2023 02 20.
Article in English | MEDLINE | ID: covidwho-2282182

ABSTRACT

Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Glycosylation , SARS-CoV-2/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism
3.
Animals (Basel) ; 11(7)2021 Jul 02.
Article in English | MEDLINE | ID: covidwho-1295738

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the zoonotic causative agent of coronavirus disease 2019 (COVID-19) that has caused a pandemic situation with millions of infected humans worldwide. Among domestic animals, there have been limited studies regarding the transmissibility and exposure to the infection in natural conditions. Some animals are exposed and/or susceptible to SARS-CoV-2 infection, such as cats, ferrets and dogs. By contrast, there is no information about the susceptibility of ruminants to SARS-CoV-2. This study tested the antibody response in 90 ovine pre-pandemic serum samples and 336 sheep serum samples from the pandemic period (June 2020 to March 2021). In both cases, the animals were in close contact with a veterinary student community composed of more than 700 members. None of the serum samples analyzed was seroreactive based on an enzyme-linked immunosorbent assay (ELISA) using the receptor-binding domain (RBD) of the spike antigen. In this sense, no statistical difference was observed compared to the pre-pandemic sheep. Our results suggest that it seems unlikely that sheep could play a relevant role in the epidemiology of SARS-CoV-2 infection. This is the first study to report the absence of evidence of sheep exposure to SARS-CoV-2 in natural conditions.

4.
Animals (Basel) ; 11(3)2021 Mar 02.
Article in English | MEDLINE | ID: covidwho-1124718

ABSTRACT

Animal infections with SARS-CoV-2 have been reported in different countries and several animal species have been proven to be susceptible to infection with SARS-CoV-2 both naturally and by experimental infection. Moreover, infections under natural conditions in more than 20 mink farms have been reported where humans could have been the source of infection for minks. However, little information is available about the susceptibility of pet animals under natural conditions and currently there is no SARS-CoV-2 epidemiological assessment occurrence in household ferrets. In this study, the presence of SARS-CoV-2 antibodies was evaluated in serum samples obtained from 127 household ferrets (Mustela putorius furo) in the Province of Valencia (Spain). Two ferrets tested positive to SARS-CoV-2 (1.57%) by in-house enzyme-linked immunosorbent assay based on receptor binding domain (RBD) of Spike antigen. Furthermore, anti-RBD SARS-CoV-2 antibodies persisted at detectable levels in a seropositive SARS-CoV-2 domestic ferret beyond 129 days since the first time antibodies were detected. This study reports for the first time the evidence of household pet ferrets exposure to SARS-CoV-2 in Spain to date.

5.
Biology (Basel) ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1125483

ABSTRACT

Several hundred millions of people have been diagnosed of coronavirus disease 2019 (COVID-19), causing millions of deaths and a high socioeconomic burden. SARS-CoV-2, the causative agent of COVID-19, induces both specific T- and B-cell responses, being antibodies against the virus detected a few days after infection. Passive immunization with hyperimmune plasma from convalescent patients has been proposed as a potentially useful treatment for COVID-19. Using an in-house quantitative ELISA test, we found that plasma from 177 convalescent donors contained IgG antibodies specific to the spike receptor-binding domain (RBD) of SARS-CoV-2, although at very different concentrations which correlated with previous disease severity and gender. Anti-RBD IgG plasma concentrations significantly correlated with the plasma viral neutralizing activity (VN) against SARS-CoV-2 in vitro. Similar results were found using an independent cohort of serum from 168 convalescent health workers. These results validate an in-house RBD IgG ELISA test in a large cohort of COVID-19 convalescent patients and indicate that plasma from all convalescent donors does not contain a high enough amount of anti-SARS-CoV-2-RBD neutralizing IgG to prevent SARS-CoV-2 infection in vitro. The use of quantitative anti-RBD IgG detection systems might help to predict the efficacy of the passive immunization using plasma from patients recovered from SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL